Research
Research Divisions
Research Progress
Achievements
Research Programs
Location: Home>Research>Research Progress
Fault-tolerant control for a Multi-propeller Aerostat based on sliding mode control allocation method
Author: Update times: 2020-12-31                          | Print | Close | Text Size: A A A

This article develops a fault-tolerant control strategy for a multi-propeller aerostat based on sliding mode control allocation approach. And the loss of effectiveness of propeller faults and the wind disturbance is considered in the system. The proposed control approach consists of two modules: the upper-level virtual control part, which is developed to enable the closed loop system asymptotically stable; the lower-level control allocation part, which can accommodate the propeller faults, and redistribute the virtual control vector to the available propellers. Stability analysis indicates that the aerostat plant is globally asymptotically stable. The validity of the developed fault tolerant control strategy is proved through simulation results based on a simplified multi-propeller aerostat with propeller faults.

This study is published in Proceedings of 2019 11th CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes, SAFEPROCESS 2019.

 

Copyright © 2003 - 2013. Shenyang Institute of Automation (SIA), Chinese Academy of Sciences
All rights reserved. Reproduction in whole or in part without permission is prohibited.
Phone: 86 24 23970012 Email: siamaster@sia.cn