High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.
This work was published on Optical Engineering,2016,55(5):1-11. titled Fast approach to infrared image restoration based on shrinkage functions calibration .